Int. J. Heat Mass Transfer.
Printed in Great Britain

Val. 34, No. 4/3. pp. 961-971, 1991

0017-9310:91 $3.00+0.00
Pergamon Press ple

Modelling of pulse-periodic energy flow action
on metallic materials

I YU. SMUROV.t A. A. UGLOV.,}Y A. M. LASHYN,} P. MATTEAZZL}
L. COVELLI§ and V. TAGLIAFERRI |
+A. A. Baikov Institute of Metallurgy. U.S.S.R. Academy of Sciences, Leninsky pr. 49, Moscow,
U.SS.R.
1 Istituto di Chimica, Universitd di Udine, v. Ungheria 43, 33100 Udine, Ttaly
§ Istituto Macchine Utensili, C.N.R., v. Ampere 56, 20131 Milano, Italy
| Dipartimento di Meccanica, Politecnico di Milano, Piazza Leonardo da Vinei, 20131 Milano, Ttaly

(Received 19 October 1989 and in final form 15 May 1990)

Abstract—Heat processes in pulse-periodic energy flow action on metallic materials are considered. Heating,

melting, evaporation and solidification are analysed by means of mathematical modelling. Velocities and

positions of phase boundaries (both evaporation and melting) are determined over a wide range of operating

parameters. The existence of surface temperature, melt thickness and velocities of phase boundarics of

different types of oscillation regimes are shown. Relationships between the pulse-periodic energy flow
structure and the evolution of heat processes are determined.

1. INTRODUCTION

THE PULSE and pulse-periodic treatment of metallic
materials by means of laser action, electron beam
and plasma flows is a well-known and widely used
technique {1, 2]. Various types of solid state and CO,
pulse and pulse-periodic lasers, electron beam guns
and plasma torches are available. They are char-
acterized by different energy and pulse durations
{go = 10710 W em™7, 1=10""-10"" s) and are
utilized in a varicty of applications including trans-
formation hardening, welding, cutting and alloying.
The task of optimizing the operating parameters in
pulse-periodic energy flow action is a crucial step. The
short duration of pulse action and therefore the high
velocities of the heat processes on one side and the
localization of action on the other, makes a dircct
experimental investigation of these phenomena a hard
task. Therefore, providing a numerical experiment
instead of a real one, is an important opportunity to
optimize the parameters of pulse-periodic treatment.
On the other side, investigation of the behaviour of
phase boundaries during pulse-periodic energy flow
action, with different cnergy distributions, is a fun-
damental problem.

In a number of articles concerning the problem of
the treatment of mathematical modelling of materials
by concentrated energy flows, mainly pulsed or con-
tinuous conditions of action are considered [3-15]
whereas only in some articles are the peculiarities of
pulse-periodic action analysed [16-19]. This derives
from the difficulties in the simultaneous description
of heating/cooling, melting/solidification and evap-
oration phenomena. Usually only heat transfer during
pulse-periodic energy flow action is analysed [16-18]
or only the movement of the melting front in one
direction (i.¢. in the absence of solidification [19]). We
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are not acquainted with papers where the movement
of both phase fronts—evaporation and melting/
solidification—are considered concerning the pulse-
periodic action of energy flows. Only on the basis of
the exact determination of the positions of both phasc
fronts is it possible to analyse the dependence of the
melt thickness on time, which is important for the
technological applications of pulse-periodic action of
energy flows.

The main aim of the present article is to determine
the relationships between the structure (i.e. pulse dur-
ation, duty cycle, value of energy density flow, etc.)
of energy density flow and the evolution of heat
processes.

2. MATHEMATICAL MODEL

The mathematical model proposed includes the
processes of heating, melting, evaporation and sol-
idification under the action of an energy flow with
different shapes on a metal slab {20-22]. It is assumed
that the energy flow is absorbed on the irradiated
surface ; convection and radiation mechanisms of heat
losses from both sides of the slab are considered and
melting (solidification) is determined by the classical
Stephan boundary condition.

In the present model we neglect the convective heat
transfer in comparison with the conduction one. It is
necessary to discuss this assumption in detail. In the
general case of the action of concentrated encrgy
flows on metals the convective heat transfer is caused
mainly by the following reasons: (1) {ree convection;
{2) surface tension driven convection (Marangony
effect} : (3) forced convection under the action of the
evaporation reactive pressure; (4) forced convection
under the action of gas or plasma flows. The above-
mentioned phenomena are discussed below.
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¢, -~ thermal diffusivity of liquid and solid
phase, respectively

g free fall acceleration

I depth of the melt

L thickness of the slab

L.,  latent heat of melting

L. latent heat of evaporation

Pr Prandd number

q energy density flow

golt) absorbed cnergy density flow

R radius of the molten pool

Re Reynolds number

Re*  reduced Reynolds number, (¢,k/v)(hiR)’

S, (0. 5-(r) positions of evaporation and
melting phase boundaries, respectively

L starting time [or melting

T, initial temperature

T (x.t) temperature of liquid phase

T.{(x. 1} temperature of solid phase

T temperature of melting

m

NOMENCLATURE

v, radius component of liquid velocity !
x. ¢ distance and time. respectively.

Greek symbols

& ~dg/dT

@, coefficient of convection heat losses of
irradiated and rear surfaces of the slab

] bulk thermal expansion coeflicient

&,»  cmissivities of irradiated and rear
surlaces of the slab

emissivities of the environment ncar the
irradiated and rear surfaces of the slab
i dynamic viscosity

4.~  thermal conductivity of liquid and solid
phase. respectively

v kinetic viscosity

pi~  densitics of liquid and solid phase,
respectively

G surfuce tension.

Free convection

If the treated sample is disposed horizontally and
the encrgy flux acts on its upper surface (typical situ-
ation. for example, for laser treatment) the tem-
perature gradient vector and the vector of the free fall
acceleration are oricnted in opposite directions. This
statement is true for the surface heat source. because
in most of the cases of the action of concentrated
energy flows (laser, plasma. concentrated solar
encrgy, electron beam with comparatively small accel-
eration voltage) the hecat source can be considered flat
[1]. In the case of another arrangement of the treated
samplc the criterion for the neglect of the free
convection is the inequality, that is the Rayleigh num-
ber is much less than unity, Ra = (gph*ATiva) < 1.
For melt thicknesses /i of about 30 pm and melt
overheating A7 of about 1000 K the Rayleigh number
is of the order of 0.1,

Surfuce tension driven convection [23-25]

The criterion for the neglect of the convective
heat transfer is Re* Pr = (x¢/naz)(h?[R)? « 1. For
the typical cases of pulse laser treatment with the
duration of nearly I ms the corresponding melt thick-
ness is less than 100 wm and the radius of the molten
pool is of the order of 1 mm [1]. For a shorter pulse
duration, as considered in the present article, the melt
thickness is much less but the radius which is deter-
mined by the corresponding radius of the laser beam
(or another cnergy flow) is practically the same.
Therefore, for the typical conditions of the energy
flow action considered here the molten pool is shallow,
r.e. i/ R » 1. This leads to consider the conductive heat
transfer dominant in comparison with the convective

one. As shown previously in ref. [25] the criterion
Re* Pr <« 1 is correct for a surface driven convection
up to times greater than 1 ms.

Forced convection under the action of the evaporation
reactive pressure [1]

The evaporation reactive pressure can be roughly
estimated as

pxAexp(—T,/T)

where 4 and T, are constants. The convective heat
transfer will be negligible if

Re* Prax (A exp (— T/ T)nad ("R « L.

This inequality usually is correct for a shallow molten
pool the surface temperaturce of which is less than the
botling temperature (this corresponds to values of
absorbed energy density flux usually less than 10° W
em’ " and comparatively short energy pulse duration).

We do not consider the forced convection under
the action of gas or plasma flows.

It is possible to conclude that during the action of
concentrated encrgy flows on metals for sufficiently
short pulse duration (or limited values of energy den-
sity flow) and large radius of energy flux. the con-
vective heat transfer (in a shallow molten pool with
the surface temperature less than the corresponding
botling temperature) is less than the conductive heat
transfer.

A further question to be discussed is the possibility
of using a classical parabolic type cquation for the
description of high frequency temperature oscil-
lations. In phenomenological heat transfer theory, the
velocity of heat propagation is assumed to be infinitely
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to take mto account a ﬁmte veloc1ty of h at propa-
gation. This idea was first discussed in ref. [26] and
later developed in a number of articles [27, 28].Usually
the velocity of heat propagation w is determined by the
thermal diffusivity and the relaxation period (time) of
heat transfer w = \/ (a/ty). The task of heat transfer in
a semiinfinite body with constant initial temperature,
the surface of which since 7 = 0 is maintained at con-
stant temperature T (the peculiarities of heat transfer
in this task seem to be not very far from the problem
under consideration here) has been discussed pre-
viously [29]. Tt was shown that starting from the time
t > 81, the difference between the solutions with finite
and with infinite heat transfer velocity is negligible.
Similar results can be obtained from other tasks [30].
For different materials and a wider temperature range,
the relaxation period is in the range 107'°~10~ "2
Therefore, starting from a time larger than 1077 s it
is possible to use the standard heat transfer equation
of parabolic type.

Close to this question is

the pro

acoustic pulse generation, which is formulated on
the basis of a hyperbolic type of equation [31, 32]. It

blem of photo-

is assumed that the heat transfer velocity is equali to .

the longitudinal wave velocity. It is shown that the
elastic displacement caused by the surface heat source
is of the order of | nm and the corresponding typical
time values are 150400 ns. In our article we consider
mainly time intervals larger than those mentioned
above. Also the existence of liquid phase on the metal
surface sufficiently decreases the temperature oscil-
lations in a solid phase (as it will be shown below
especially when the amount of heat accumulated in
the melt is larger than oscillations of energy flow).

The mathematical model used can be written in the
following form:

(’T,_IE‘TI S <x<S -
ox: " a, é D <x< S0, st<
Go() —a [T\ (x,0) =T, ] —olc, TH{(x. 1) —¢, T}
, ¢T, ds, .
= —hMar +P|Lv?, L=S8(n
sl i)
o e T
& = Jrso.n LT e 0.0
;6T,_}(T7 Ld53
Moy T ey TPRar
T'=T,=T., x=5,1); S,(t)=0
527*2 _ i OTZ S <ve< L
o Ta o SOSES

- 6T2 4 4
— 42 Ox =a(T,—T)+o(c;T:~c;T¢), x=1L

T(x,t=0) = T,. (1)

Knudsen law of evaporanon
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where Boltzmann’s constant k = 1.38 x 10 " JK ',
m is the atomic mass of the slab material, and 7, the
boiling temperature corresponding to the pressure
p. [33,34]. System (1) is solved numerically. the
phase change fronts are tracked continuously and the
latent heai release is treated as a muvmg Uuuuuauy
condition. In both regions of liquid and solid phases
the moving uniform grids consist of a fixed number
of points. Each grid point moves with different
velocity. The Crank—Nicolson technique of various
derivatives is used [35 37]. We considered the results
of pulse-periodic energy ﬁow action on a steel slab,
1 mm thick, with the following heat transfer con-
stants: ¢ = 5.5x10 *m?s '";i=29Wm 'K ';
L,=27x10°Jkg '; L, =71x10°)kg ': T, =
1800K; 7, =2750K; T, = 300 K; ¢ = 0.42.

In all the cases considered below the slab can be
considered as a semi-infinite body.

3. RESULTS AND DISCUSSION

3.1. Action of rectangular energy pulses

The time dependence of surface temperature, melt
thickness, and velocity of meiting (solidification) front
are represented on Fig. |. In this case the pulse-
periodic energy flow action was modelled considering
constant energy density flow pulses separated by time
intervals equal to the pulse duration (duty cycle, that

means nulse neriod to nulse duration ratioc eaual ta N
means puise period 10 puise guraien ralic equai o A}
S,

The exact value of each pulse durationis 1.82 x 10~

the value of energy density flow is 2.5x 10° W ¢m ™2
and the number of pulses is ten. The end of the last
energy pulse being at the time 3.458 x 10" * s ; we set
the end of the calculation at 3.64 x 10~ * s; thercfore
ten periods, each consisting of one energy pulse plus
the waiting time, are considered. The irradiated sur-
face temperaturc starts from the initial value of 300
K, which corresponds to a non-dimensional value of
T/T, = 0.162, and approaches, after the tenth pulse,
a value of 1.57,,. According to the structure of pulse-
periodic action, the dependence of surface tem-
perature on time shows ten locai maxima, at the end
of the energy pulses. Each of these is higher than the
previous one, but the situation for the corresponding

minimim difFforont Tha vag
minimum is aincrent.

wfnna o

111v lbsulc‘llll,y Ul suidace wein-
perature oscillations is broken when the decreasing
temperature curves cross the melting point. Starting
from the fourth and up to the seventh pulse on the
temperature curve, appear the regions of constant
melting temperature value, so-called ‘steps’. They are
the result of melt solidification when first its overheat-
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ing above the melting point practically disappears
and then solidification starts. Practically all the melt
solidifies during this stage. The largest values of melt
thickness start from near 1 um for the fourth pulse up
to 5 pum for the sixth one. After that, the amplitude
of melt thickness oscillations decreases strongly with
time. This is the result of heat accumulation in the
melt by its overheating. The larger the melt thickness
and its overheating, the larger the amount of energy
stored in the melt and therefore the smaller the influ-
ence of pulse-periodic structure of energy flow on the
meliting front movement and the smaller the amplitude
of melt thickness oscillations. When the melt thickness
is small its maximum value per period of energy flow

SMUROV ef al.

action corresponds to the end of the energy pulse and
to the maximum value of surface temperature 10o0.
When the melt thickness increases. it takes more time
for heat to reach the phase boundary of melting,
in this way oscillations of melt thickness will be re-
tarded if compared with the oscillations of energy flow
and surface temperature. At the samc time on in-
creasing the melt thickness, the melting velocity
quickly decreases (see seventh and eighth pulse) due
to the melt overheating. Concerning solidification vel-
ocity the situation is the following: the increase of
solidification rate with time, after the end of the energy
pulse, results from a decrease in the melt overheating
rate. Then, when the melt temperature reaches prac-
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F1G. 1. Heat processes corresponding to the pulse-periodic energy flow action on a steel slab. Shape of

energy pulse, rectangular ; pulse duration, 1.82 x [0~

* s duty cycle, 2; maximum value of energy density

flow, 2.5x10° W em™2. Time dependence of: density of energy flow (curve 1); surface temperature

normalized on the temperature of melting point

T,, (curve 2); melt thickness (curve 3); melting (sol-

idification) front velocity (curve 4).
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tically the melting point, the solidification rate will be
determined by the amount of heat produced at the
phase boundary during solidification. In this case the
absolute value of the solidification front velocity will
decrease and this is the reason why an extreme appears
on the curve of solidification velocity. The largest
values of solidification velocity correspond to the case
of the smallest overheating of the melt, that is the case
of energy action on the metal surface corresponding
to the smallest melt thickness. This is the reason why
the largest value of solidification velocity is in the case
of the fourth energy pulse, when the melt just appears.
It is necessary to mention the following: the initial
value of melting velocity is zero, v,(f,,) =0, in any
case; so that all the melting curves start from the
v = 0 axis; on the contrary the values of solidification
velocity, corresponding to the end of solidification,
usually are not equal to zero and the curves do not
reach the v = 0 axis. For a better understanding of
the details of the behaviour of the phase boundary
and the exact determination of the values of time,
corresponding to the end of solidification, we con-
nected the last points on the solidification curves at
the end of solidification with the v = 0 axis by straight
lines (for the case of the fourth—sixth pulses). When
the melt is still present the curves of melting and
solidification velocity are continuous and not inter-
rupted. In the considered cases, evaporation does not
play an important role because the temperature of
the irradiated surface is comparatively small. As an
example, the largest values of evaporation velocity
corresponding to the eighth, ninth and tenth pulses
are respectively 0.045, 0.11 and 0.22 cm s~ ', that is
less than 1% of the average melting velocity. Prac-
tically the same regularities appear when the same
energy pulses have been separated by time intervals
twice as small (duty cycle = 1.5). In this case melting
starts from the third pulse. After the fifth pulse melt
does not disappear. After the seventh pulse, melt
thickness oscillations are not essential. The maximum
absolute values of solidification velocity mono-
tonically decrease with the number of pulses and nega-
tive values of phase front velocity practically dis-
appear after the ninth pulse. The evaporation is still
weak and the values of the velocities are nearly two
times larger than in the previous case.

Considering the same structure of pulse-periodic
energy flow as on Fig. I, but using energy density flow
two times larger for each pulse, i.e. g5 = 5x10° W
cm ™2, the results now show some differences in com-
parison with the previous ones. Starting from the sixth
pulse. surface temperature becomes nearly a periodic
function of the time. Beginning from the same pulse
(the sixth one) melt thickness becomes practically a
non-decreasing function of time with a weakly per-
iodic character, the reason being that melting velocity,
starting from the fifth pulse, presents only short per-
iods of negative values, which are one order of mag-
nitude less than the corresponding values of melting
velocity. After the eighth pulse, negative values of

velocity are disappearing and the phase boundary
moves only in one direction. This is the result of
heat accumulation in the melt, the thickness of which
reaches the value of 28 ym up to the end of the tenth
pulse. With the increase of surface temperature values,
the evaporation front velocity increases too and
becomes comparable to the values of the melting front
velocity.

The results of modelling of heat processes under
the action of ten rectangular energy pulses (g = 10¢
W cm~?) with the same duration as on Fig. 1 and
with the duty cycle of 1.5 are considered on Fig. 2. The
shape of surface temperature oscillations is almost the
same as that of the energy flux. If the maximum values
of temperature during the oscillation period starting
from the fourth pulse are practically constant, the
corresponding minimum values will monotonically
increase during the action of seven pulses and only
then become constant. This leads to the decreasing
amplitude of surface temperature oscillations. the
maximum values of which are limited by the evap-
oration phenomenon and minimum values by heat
accumulation near the irradiated surface. It seems that
during the action of the last three pulses it is possible
to speak of quasi-stationary surface temperature oscil-
lations, which are independent of pulse number.

The behaviour of melt thickness and melting front
velocity are even qualitatively different in cases cor-
responding to Figs. 1 and 2. The damping of melting
front oscillations is characterized by a simultaneous
monotonic decrease of both maximum and minimum
values. The evaporation front velocity values first
increase from pulse to pulse, then after some period of
time practically copy the profile surface temperature
oscillations. When the velocities of both phase bound-
aries are of the same order of magnitude (last five
pulses) then the melt thickness behaviour is deter-
mined by both of them. If the decrease of melt thick-
ness after the end of the first pulse is the result of
interrupting of surface heating, the decrease of heat
thickness on the final stage of energy flow action will
be the result of well developed evaporation. In fact,
in corresponding time intervals the velocity of the
evaporation front is larger than that of the melting
front. At the basis of the monotonical increase of
average melt thickness values lies: (a) the decrease of
its amplitude of oscillations during the first four pulses
due to heat accumulation near the irradiated surface ;
(b) the increase of its amplitude of oscillations during
the final pulses as a result of well-developed evap-
oration. The above-mentioned regularity is more
evident for lower energy density flux, when before
the stage of well-developed evaporation (appearing
consequently later), melt thickness oscillations prac-
tically disappear.

3.2. Action of energy pulses with parabolic shape

The time dependencies of surface temperature, melt
thickness, velocities of melting (solidification) front
and front of evaporation are represented in Fig. 3 for
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Fii. 2. Heat processes corresponding to the pulse-periodic energy flow action on a steel slab. Shape of

energy pulse, rectangular ; pulse duration, 1.82 x 10™ ¥ s; duty cycle, 1.5; maximum value of energy density

flow, 10® W cm "~ 2, Time dependence of : density of energy flow (curve 1) ; surface temperature normalized

on the temperature of melting point 7, (curve 2): melting (solidification) front velocity (curve 3); melt
thickness (curve 4).

the case of pulse-periodic energy flow action, where

during each period of oscillations with duration of

1.82x 10 % s, energy density flow has been rep-
resented by a parabolic function with a zero value in
the middle of the period and maximum values equal
to 5.25x10° W cm~ 7 on the boundaries. In this case
20 energy pulses have been considered during the per-
10d of energy flow action corresponding to the time
of 3.458 x 10~ * s. The calculations were produced up

to the time equal to 3.64x 107 * s, so that after the
end of energy flow action one more time interval,
equal to the period of energy flow oscillations can be
considered. A mention should be made of the fact that
energy input for the first and the last (twentieth) pulse
is two times smaller than for all the others.

The irradiated surface temperature profile is char-
acterized by approximately oscillatory behaviour cor-
responding to the structure of the energy density flow,
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with an exception for the cases of crossing of melting
temperature value by the temperature curve. The
dependence of melt thickness on time is characterized
by a different behaviour at the beginning of the energy
flow action (for the case of the first ten pulses) and at
the end of action (last ten pulses). The strong oscil-
latory character is converted in a practically linear
dependence. During the action of the fourth, fifth
and sixth pulses melt appears and then completely
disappears. The dependence of melt thickness vs time
of the action of the last ten pulses can be determined
by the average energy input and does not depend on
the structure of pulse-periodic energy flow. The value
of the melt thickness, starting from which the influence

of the pulse-periodic structure of energy flow is not
significant, is nearly 15 um, approximately the same
as in the previous cases. The most interesting and
unusual behaviour demonstrates the dependence of
melting (solidification) velocity vs time. The transition
from the essential melt thickness oscillations, deter-
mined by the energy flow structure to the practically
monotonic melt thickness growth determined by the
average energy input, is a function of the ratio of the
amount of energy stored in the liquid phase to the
value of energy flow oscillations relative to its own
average. When this ratio is much greater than unity
and in the absence of well-developed evaporation, the
melt thickness oscillations are weak. The smaller the
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deviations of pulse-periodic energy flow from its aver-
age value, the shorter is the stage of essential melt
thickness oscillations. Both deviations of amplitude of
energy density flow from its average value and energy
input absolute value per oscillation period are sig-
nificant. On increasing frequency oscillations with
unchanged energy flow structure and average cnergy
input value, the melt thickness oscillations will be
decreased. The oscillatory type of behaviour of phase
boundary velocity, with an initial increase of ampli-
tude oscillations, followed by a further decrease and
the weak dependence of oscillations frequency on time
seems 1o be produced rather from a hyperbolic type
cquation than a parabolic one. Consideration of Fig.
| reveals the qualitative difference in behaviour of
melting (solidification) velocity. The main reason for
that is the difference in the pulse-periodic action struc-
turc. In Fig. 1 the time intervals of energy action have
been followed by the same intervals with the absence

of energy flow. In Fig. 3 in one spot per period of

action, the valuc of energy density flow is equal to
zero ; in all the other time intervals energy flow is small
in comparison with the maximum value but it exists.
Even a small energy action on a solidifying melt will
be significant when the melt thickness is of the order
of 1 um or less, as in the case of lourth-sixth pulses
action. Even a light heating of the solidifying melt
decreases the absolute value of solidification velocity.
The influence of the same energy amount action will
decrease with increasing the melt thickness and
decreasing the absolute values of solidification
velocity. The further acton of energy pulses on the
metal surface produce the melt thickness and melt
overheating cnough 10 stop the solidification phenom-
enon. This is one more reason for a further decrease
in the amplitude of melting velocity oscillations.
The average cenergy input and surface emperature
are not large enough for the extensive cvaporation
phenomenon, the largest velocity values are less than
2¢ems

Considering the same structure of pulse-periodic
energy flow as in Fig. 3 but with a double energy
density flow, it is possible to see that the oscillations
of melting (solidification) velocity have been shifted
to the right if compared to the plot of Fig. 3. In this
case the increasing absolute values of solidification
velocity, with the number of pulses. disappear and
the largest absolute values are obtained during early
melting stages. The amplitude of melt velocity oscil-
lations decreases down to the value ol about 2.5 cm
s ', but on increasing the surface (ecmperature
maximum values up to 1.97,, the veloaty of ¢vap-
oration increascs too and the maximum value (11 ¢cm

s ') becomes higher than the corresponding values of

melting velocity (i.e. about §cms '),

3.3. Quusi-siationary state

Another relevant question for the pulse-periodic
energy flow action problem is the existence of a quasi-
stationary state. It is well known that in the case of a

Y. SMUROV el al.

one-dimensional heating model constant energy den-
sity flux causes an unlimited temperaturc growth, the
same is true for the one-dimensional melting model.
Only including the evaporation phenomenon, for
example in the form of equations (1) and (2), does it
become possible to obtain the quasi-stationary solu-
tion. Considering the average value of energy den-
sity flow instecad of the real pulse-periodic structure
allows the “average’ time independent solution to be
obtained. The details of surface temperature, vel-
ocities of phasc boundaries and melt thickness chang-
ing up to values corresponding to the quasi-stationary
state are of great interest. The time dependencics of
surface temperature, melt thickness, velocities of melt-
ing and evaporation fronts arc represented in Fig. 4
for the case of pulse-periodic energy flow action where
during each period of oscillations of the same duration
as for Figs. 1-3. cnergy density flow consists of tri-
angle pulses with a zero value at the beginning and the
highest value, corresponding (0 5.25x 10° W em ~ at
the end of the pertod. In this case the action of 19
triangle pulses is considered. Practically during the
action of the first pulse. the surface temperature
reaches its maximum valuc of about 2.27,,. During
the further energy flow action the surface temperature
copies the structure of cnergy flow. The evaporation
front velocity, defined by sarface temperature, basi-
cally shows the same behaviour. The largest transient
period is in this case for meltung front velocity and
accordingly to the melt thickness. Only after the action
of the sixth pulse does melt thickness reach its maximum
value. The value of melt thickness is not constant as in
the case of the quasi-stationary solution for constant
energy flux but it, like all the other parameters. oscil-
lates with time. In the previous cascs the oscillutions
of melt thicknesses were the result ol heating and
melting the metal under the action of energy pulscs
whereas cooling and solidification mainly depend on
heat transfer into the bulk of the metal. In Fig. 4 the
oscillations of melt thickness are mainly the result
of the interaction of melting and evaporation phase
boundaries. Both velocities of melting and evap-
oration have the samc average value, both are oscil-
lating, but at the beginning of cach encrgy flow oscil-
lations period the values of melting velocity are larger
than the corresponding ones of the evaporation vel-
ocity. An opposite situation exists at the end of cach
period because surface temperature and accordingly
evaporation front velocity copies the cnergy flow
structure. This leads to the increase of melt thickness
at the beginning and to the decrease at the end of
cnergy pulses. The peculiarity of the considered situ-
ation relative to the previous one represented in Figs.
1-3 is in the exact coincidence of the frequency of
oscillations of surface temperature, velocities of phase
boundaries and melt thickness with the frequency of
energy flow. Only in the case when all the physical
variables of system (1) will oscillate at one frequency
1s it possible to obtain their average ime independent
values for cuch period ol oscillations. Therefore. in
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FiG. 4. Heat processes corresponding to the pulse-periodic energy flow action on a steel slab. Shape of

energy pulse, triangle ; pulse duration, 1.82 x 10™° s; duty cycle, 2 ; maximum value of energy density flow,

5.25x 10° W cm™ . Time dependence of : density of energy flow (curve 1) ; surface temperature normalized

on the temperature of melting point T, (curve 2); melt thickness (curve 3); melting (solidification) front
velocity (curve 4).

the considered case no exact average time independent
values of physical variables exist. After the con-
sideration of the results of pulse-periodic energy flow
action with different pulse shape and values of energy
density flow is it possible to make the conclusion
that the smallest transient period corresponds to the
change of surface temperature, the largest to the melt
thickness (or velocity of melting) and between them
but close to the transient period of surface tem-
perature is the value of the evaporation velocity tran-
sient period. For example, consideration of the energy
flow with the same triangle structure but two times
smaller density of energy flow shows that 19 pulses
are not enough for melt thickness stabilization, the
average values of which per oscillation period are still

growing ; instead oscillations of surface temperature
and evaporation velocity starting from the sixth pulse
are practically independent of pulse number (constant
maximum temperature values per period and very
weak increase of minimum values). Of course it is
possible to reach the quasi-stationary state for average
energy density flow two times smaller than in Fig. 4
and for 19 triangle pulses, for example increasing the
pulse duration by two and accordingly the time of
consideration. In this case the quasi-stationary state
is reached just at the end of the pulse series.

4. CONCLUSIONS

The results of mathematical modelling of the action
of pulse-periodic energy flow on a metal surface
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show the necessity of considering the movement of
two phasc boundaries: melting (solidiication) and
evaporation {ronts. The numerical analysis described
shows the possibility to determine a number of regu-
laritics in heat processes of the pulse-periodic energy
flow action. Surface temperature oscillations follow
the encrgy flow structure except for the cases of cross-
ing the melting peint by the temperature curve, wherc
the shape of temperature oscillations may be broken
by the energy absorption and release, determined
consequenily by melting and solidification of metal.
As their frequencies are equal to those of cnergy flows
then the amplitude decrcases with the increase of
energy density flow, time of action and sometimes in
the area of crossing the melting point, The latter is
characteristic for the relatively low values of cnergy
density flux. The melt thickness behaviour shows a
strongly oscillatory character during the initial stage
of its existence. Then the amplitude of oscillations
strongly decreases up to a practically monotonic
increase of mclt thickness determined by the average
energy input valuc. With a further increase of energy
action time, which leads to the surface temperature
increasing and surface evaporation development, melt
thickness oscillations appear once again. When the
melt thickness is small the frequency of its oscillations
is cqual to the encrgy flow one, and then the maximum
values of surface temperature and melt thickness per
oscillation period are rcached at the same time. With
increasing melt thickness, the frequency shift appears
up 1o the oscillation of surface temperature and melt
depth being in the antiphase. The melting (sol-
idification) velocity is characterized by essentially
different types of strongly oscillatory behaviour. Dur-
ing the initial stage of melt existence its amplitude
of melting (solidification) velocity oscillations can
increasc or decrease being determined by the energy
flow structure. With a further melt thickness increasc.
the amplitude of velocity oscillations  strongly
decreases and the above-mentioned {requency shift
appears. At the stage of well-developed cvaporation
its velocity oscillations arce determined by the surface
temperaturc copying its oscillations shape. The exis-
tence of quasi-stationary oscillations of surface tem-
perature, mclt thickness and velocitics of phase
boundarics with one frequency (equal to the energy
flow one) with the corresponding average values per
osctllation period being constant is shown. Itis necess-
ary to take into account three different transient per-
iods for the shape of quasi-stationary oscillations:
the smallest for surface temperature. the largest for
melting front velocities and melt thickness, finally
between them for the evaporation front velocity.
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MODELISATION DE L’ACTION D’UN FLUX D’ENERGIE A IMPULSION PERIODIQUE
SUR DES MATERIAUX METALLIQUES

Résumé—On considére des mécanismes thermiques sous ’action d’un flux d’énergie 4 impulsion périodique

sur des matériaux métalliques. Le chauffage, la fusion, 1'évaporation et la solidification sont analysés par

une modélisation mathématique. Les vitesses et les positions des frontiéres des phases (3 la fois évaporation

et fusion) sont déterminées pour un large domaine des paramétres opératoires. On montre l'existence de

la température superficielle, de I'épaisseur fondue et des vitesses des frontiéres des phases, pour différents

types de régimes. On détermine les relations entre la structure du flux énergétique périodique et I'évolution
des mécanismes thermiques.

MODELLIERUNG EINER PERIODISCH GEPULSTEN ENERGIESTROMUNG AUF
METALLISCHE MATERIALIEN

Zusammenfassung—FEs werden Wirmeprozesse mit periodisch gepulster Energiestrémung auf metallische

Materialien betrachtet. Mit Hilfe eines mathematischen Modells werden die Vorgiinge der Beheizung, des

Schmelzens, des Verdampfens und des Erstarrens untersucht. Geschwindigkeit und Lage der Phasengrenzen

(beim Verdampfen und beim Schmelzen) werden in einem weiten Bereich der EinfluBgréBen bestimmt. Fiir

verschiedene Typen von Oszillationen werden Oberflichentemperaturen, Schmelzdicken und Geschwindig-

keiten der Phasengrenzen gezeigt. Der Zusammenhang zwischen der Struktur des periodisch gepulsten
Energiestroms und der Wirmeausbreitung wird bestimmt,

MOJEJJUPOBAHME BO3JEACTBUS UMNYJIbCHO-ITEPUOJAUYECKOIO MOTOKA
3HEPIT'HA HA METAJUJTHYECKHE MATEPUAJIBI

Amporaums—MHccnenyloTcs TennoBble NPOLECCH, NPOMCXOMLUME UPH BO3ACHCTBHH HMITYJILCHO-
NEPHOIUYECKOr0 IOTOKA SHEPIMH Ha MeTalidyeckue MaTepuayssl. C NOMOIIBIO MaTEeMaTHYECKOTO
MOJEIHPOBAHNS AHAJIH3HPYIOTCA MNpPONECCH HAarpeBa, [UIABJICHHS, HCIApCHHS M 3aTBepaeBaHus. Omnpe-
JENIAXOTCA CKOPOCTH U pacnosioxkeHHe (Pa30BBIX IPaHHIL (MCTIAPEHHS H IVIABJICHHS) LIS IUKPOKOTO JHATIA-
30Ha HM3MEHEHMH peXHMMHEIX NapaMeTpoB. IIpHBOIOATCA IDaHHBIE IIS TEMNEPATYPhl MOBEPXHOCTH,
TOJIUHHBLL PACILUIaBA ¥ CKOPOCTH ()a30BBIX IPAHMII NPH Pa3/IMYHBIX THIAX KOJeOaTenbHbIX PEXHUMOB.
YcTanapnupaeTcs 3aBHCHMOCTh MEXAY CTPYKTYPOH HMIYJILCHO-NIEPHORMYECKOTO MOTOKA JHEPIMH H
9BOJIIOIMEH TEIJIOBLIX IPOLIECCOB.



