
Modelling of pulse-periodic energy flow action 
on metallic materials 

I. YU. SMIJROV,? A. A. UGLOV,? A. M. LASHYN.? P. MATTEAZZI.$ 

L. COVELLQ and V. TAGLIAFERRlli 

+A. A. Raikw Institute of Metallurgy. U.S.S.R. Academy of Sciences, Leninsky pr. 49, Moscow. 
IJ.S.S.R. 

: Istituto di Chimica, Univcrsitri di Udine. v. Ungheria 43, 33100 Udine, Italy 
4 istituto Macchine Utensili. C.N.R.. v. Ampere 56, 20131 M&no, Italy 

I/ Dipartimento di Meccanica, Politecnico di Milano. Piazza Leonardo da Vinci, 20131 M&no, Italy 

Abstract-Heat processes in pulse-periodic energy Ilow action on metallic materials areconsidered. Heating. 
melting, evaporation and solidj~~ation are analysed by means of mathernati~~~l modelling. Velocities and 
positions ofphase boundaries (both evaporation and melting) are determined over a wide range of operating 
purametcrs. The existence of surface temperature. melt thickness and velocities of phase boundaries of 
dilTerent types of oscillation regimes are shown. Relationships between the pulse-periodic energy flow 

structure and the evolution of heat processes arc determined. 

1. INTRODUCTION 

THE PIJLSE and pulse-periodic treatment of metallic 
materials by means of laser action, electron beam 
and plasma Bows is a well-known and widely used 

technique [I, 21. Various types of solid state and CO? 

pulse and pulse-periodic lasers, electron beam guns 
and plasma torches are available. They are char- 
acterized by different energy and pulse durations 

(y. = IO’--IO’ W cm- ‘, t = IO-“-IO-’ s) and are 
utilized in a variety of applications including trans- 

formation hardening, welding, cutting and alloying, 
The task of optimizing the operating parameters in 
pulse-periodic energy flow action is a crucial step. The 
short duration of pulse action and therefore the high 
velocities of the heat processes on one side and the 
localization of action on the other, makes a direct 
experimental investigation of these phenomena a hard 
task. Therefore, providing a numerical experiment 
instead of a real one, is an important opportunity to 
optimize the parameters of pulse-periodic treatment. 
On the other side, investigation of the behaviour of 
phase boundaries during pulse-periodic energy flow 
action. with different energy distributions. is a fun- 
damental problem. 

In a number of articles concerning the problem of 
the treatment of mathematical modelling of materials 
by concentrated energy flows, mainly pulsed or con- 
tinuous conditions of action are considered [3-I.51 
whereas only in some articles are the peculiarities of 
pulse-periodic action analysed [I&191. This derives 
from the difficulties in the simultaneous description 
of heating/cooling, melting/solidification and evap- 
oration phenomena. Usuatly only heat transfer during 
pulse-periodic energy flow action is analysed [I 6-l 81 
or only the movement of the melting front in one 
direction (i.e. in the absence of solidification [l9]). We 

are not acquainted with papers where the movement 

of both phase fronts-evaporation and melting/ 
solidification-are considered concerning the pulse- 
periodic action of energy flows. Only on the basis of 
the exact determination of the positions of both phase 

fronts is it possible to analyse the dependence of the 
melt thickness on time. which is important for the 
technological applications of pulse-periodic action of 

energy Rows. 
The main aim of the present article is to dcterminc 

the relationships between the structure (i.e. pulse dur- 
ation, duty cycle, value of energy density flow, etc.) 

of energy density flow and the evolution of heat 
processes. 

2. MATHEMATICAL MODEL 

The mathematical model proposed includes the 

processes of heating, melting. evaporation and sol- 

idification under the action of an energy ffow with 
different shapes on a metal slab [20-221. It is assumed 
that the energy flow is absorbed on the irradiated 
surface : convection and radiation mechanisms of heat 
losses from both sides of the slab are considered and 
melting (solidification) is determined by the classical 

Stephan boundary condition. 
In the present model we neglect the convective heat 

transfer in comparison with the conduction one. It is 
necessary to discuss this assumption in detail. In the 
general case of the action of concentrated energy 
flows on metals the convective heat transfer is caused 
mainly by the following reasons : (1) free convection ; 
(2) surface tension driven convection (Marangony 
effect) ; (3) forced convection under the action of the 
evaporation reactive pressure ; (4) forced convection 
under the action of gas or plasma flows. The abovc- 
mentioned phenomena are discussed below. 
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NOMENCLATURE 

(‘1.2 thermal diffusivity of liquid and solid 

phase. rcspoctivcly 

.tl lice fail ~lccelerati(~n 

II depth of the melt 
1, thickness of the slab 

L, latent heat of melting 

1 
I;;. 

latent heat ofevapor~ltion 

Prandtl numbcl 

(I energy density flow 

C!Cllf) absorbed energy density flow 

R radius of the molten pool 

Rf Reynolds number 

RF+ reduced Reynolds number, (~.,k;~)(lllR)’ 
S,(t). S,(f) positions of evaporation and 

melting phase boundaries, respectively 

f 131 starting time for mdting 

T6, initial temperature 
T, (s. f) tempcraturc of liquid phase 
T,(.Y, t) tcrnpc~~tu1.c of solid phase 

T,,, tempcruturc of melting 

I‘, radius component of’ liquid velocity 

.X. I distance and Gmc. rcspcctivcl>. 

Greek symbols 
- dri,:d T 

coetficient of convcctioll heat losses of 
irradiated and rear su&ccs of the slab 

bulk thermal expansion coefficient 
emissivities of ~r~diatcd and rear 

surfaces of the slab 
emissivities of the cnvironmcnt near the 

irradiated and rear surl’dccs of the slab 

dynamic viscosity 
thermal conductivity of tiquid and solid 
phase. respectively 
kinetic viscosity 
densities of liquid and solid phnsc. 
rcspcotively 

surface tension. 

If the treated sample is disposed horizontally and 

the energy flux acts on its upper surface (typical situ- 
ation. for example, for laser treatment) the tem- 
perature gradient vector and the vector of the free fall 

acceleration are oriented in oppositu directions. This 
statement is true for the surface heat source. because 
in most of the cases of the action of concentrated 
energy flows (laser, plasma. concentrated solar 

energy. electron beam with com~rativeiy small ace& 
eration voltage) the heat source can be considered flat 
[I]. In the case of another arrangement of the treated 
sample the criterion for the neglect of the free 
corrvcction is the inequality. that is the Ray&h num- 
ber is much less than unity, Rcr = ~~/~~~~‘A~~~u~ cc I. 

For melt thicknesses Ir of about 50 km1 and melt 
ovcrhcating All‘of about 1000 K the Rayieigh number 
is of the order of 0.1. 

The criterion for the neglect of the convective 
heat transfer is l&j* Pr = (~~~}~~~~,~(~7~~R)~ cc I. For 
the typical cases of pulse laser treatment with the 
duration of nearly I ms the corresponding melt thick- 
ness is less than 100 btrn and the radius of the molten 
pool is of the order of I mm [l]. I’or a shorter pulse 
duration. as considered in the present article. the melt 
thickness is much less but the radius which is dctcr- 
mined by the corresponding radius of the iascr beam 
(or another cncrgy flow) is practically the same, 
Therefore. for the typical conditions of the energy 
few action considered hcrc the molten pool is shallow. 
i.c. /r/R >> I. This leads to consider the conductive heat 
transfer d~~n~inai~t in c(~nl~arison with the convective 

one. As shown previously in ref. (31 the criterion 
RP* Pr cc 1 is correct for a surface driven convection 

up to times greater than I ms. 

The cvapor~ltion reactive pressure can be roughly 

estimated as 

f) 2 ,4 exp(-T,:T) 

where A and T* are constants. Tho convective heat 

transfer will be negligible it 

This incquaiity usually is correct for a shallow molten 
pool the surface tcmperaturc of which is less than the 
boiling temperature (this corresponds to values of 
absorbed energy density flux usually less than IO” W 

cm ’ and comparatively short energy pulseduration). 
WC do not consider the forced convection under 

the action of gas or plasma flows. 
It is possible to conciudc that during the action of 

concentrated energy flows on metals for sufficiently 
short pulse duration (or limited values of energy den- 
sity flow) and large radius of energy flux, the con- 
vective heat transfer {in a shallow molten pool with 
the surface temperature icss than the corresponding 
boiling tcmperaturc) is less than the conduc\ive heat 
transfer. 

A further yucstion to be discussed is the possibility 
of using a classical parabolic type equation for the 
description of high frequency temperature oscil- 
lations. In phcnomcnoiogical heat transfer theory, the 
vciocity of heat ~r~~~l~ation is assumed to be in~nitcly 
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large. In some problems of heat transfer it is necessary 
to take into account a finite velocity of heat propa- 

gation. This idea was first discussed in ref. [26] and 

later developed in a number of articles [27,28].Usually 
the velocity of heat propagation w is determined by the 
thermal diffusivity and the relaxation period (time) of 
heat transfer w = J(a/to). The task of heat transfer in 
a semiinfinite body with constant initial temperature, 

the surface of which since t = 0 is maintained at con- 
stant temperature T (the peculiarities of heat transfer 

in this task seem to be not very far from the problem 
under consideration here) has been discussed pre- 
viously [29]. It was shown that starting from the time 
t > 8t,, the difference between the solutions with finite 
and with infinite heat transfer velocity is negligible. 
Similar results can be obtained from other tasks [30]. 
For different materials and a wider temperature range, 
the relaxation period is in the range IO- '"-10~" s. 
Therefore, starting from a time larger than IO-’ s it 

is possible to use the standard heat transfer equation 

of parabolic type. 
Close to this question is the problem of photo- 

acoustic pulse generation, which is formulated on 
the basis of a hyperbolic type of equation [3 I, 321. It 
is assumed that the heat transfer velocity is equal to 
the longitudinal wave velocity. It is shown that the 

elastic displacement caused by the surface heat source 
is of the order of 1 nm and the corresponding typical 
time values are 150400 ns. In our article we consider 
mainly time intervals larger than those mentioned 
above. Also the existence of liquid phase on the metal 
surface sufficiently decreases the temperature oscil- 
lations in a solid phase (as it will be shown below 
especially when the amount of heat accumulated in 
the melt is larger than oscillations of energy flow). 

The mathematical model used can be written in the 
following form : 

qdt) -a&T, (.\., f) - T,] -cr[c, T;l(x. t) -c,T;] 

= i = S,(t) 

ds, _ 
dt - &T&t),) exp 

T, = T2 = T,. s = S,(t); S2(tC) = 0 

-A?$ = cc,(T?-Tf)+o(c,T;-c,T;), .Y = L 

T(s,t = 0) = To. (1) 

Constants c* and T* are determined by the Hcrz- 

Knudsen law of evaporation 

p, L 
L’* = -----I’z exp T, (k,,w) , 

2~~ Wklm) [ 1 
L 

T* = (k,lm) 
(2) 

where Boltzmann’s constant k = 1.38 x IO ” J K ’ ; 
m is the atomic mass of the slab material, and TV the 
boiling temperature corresponding to the pressure 

p, [33, 341. System (1) is solved numerically. the 
phase change fronts are tracked continuously and the 
latent heat release is treated as a moving boundary 
condition. In both regions of liquid and solid phases 
the moving uniform grids consist of a fixed number 

of points. Each grid point moves with different 
velocity. The CrankPNicolson technique of various 

derivatives is used [35537]. We considered the results 
of pulse-periodic energy flow action on a steel slab, 

1 mm thick, with the following heat transfer con- 
stants: a=5.5xlO ’ m’ss’;i=29 W m ’ K ‘; 
L,=2.7xlO”Jkg~‘;L,=7.1xlO”Jkg ‘;T,,,= 

I800 K ; T, = 2750 K ; T,, = 300 K ; E = 0.42. 
In all the cases considered below the slab can be 

considered as a semi-infinite body. 

3. RESULTS AND DISCUSSION 

3. I. Action of’rectungulur eneyy pulses 

The time dependence of surface temperature, melt 
thickness, and velocity ofmelting (solidification) front 
are represented on Fig. I. In this case the pulse- 

periodic energy flow action was modelled considering 
constant energy density flow pulses separated by time 
intervals equal to the pulse duration (duty cycle, that 

means pulse period to pulse duration ratio equal to 2). 
The exact value of each pulse duration is I.82 x 10. ’ s, 

the value of energy density flow is 2.5 x IO’ W cm ’ 
and the number of pulses is ten. The end of the last 
energy pulse being at the time 3.458 x IO ’ s; we set 
the end of the calculation at 3.64 x IO- a s; therefore 

ten periods, each consisting of one energy pulse plus 
the waiting time, are considered. The irradiated sur- 
face temperature starts from the initial value of 300 
K, which corresponds to a non-dimensional value of 
To/T,,, = 0.162, and approaches, after the tenth pulse, 
a value of 1.5T,,,. According to the structure of pulse- 
periodic action, the dependence of surface tcm- 
perature on time shows ten local maxima, at the end 

of the energy pulses. Each of these is higher than the 
previous one, but the situation for the corresponding 
minimum is different. The regularity of surface tem- 
perature oscillations is broken when the decreasing 
temperature curves cross the melting point. Starting 
from the fourth and up to the seventh pulse on the 
temperature curve, appear the regions of constant 
melting temperature value, so-called ‘steps’. They are 
the result of melt solidification when first its overheat- 
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ing above the melting point practically disappears action corresponds to the end of the energy pulse and 
and then solidification starts. Practically all the melt to the maximum value of surface temperature too. 
solidifies during this stage. The largest values of melt When the melt thickness increases. it takes more time 
thickness start from near 1 pm for the fourth pulse up for heat to reach the phase boundary of melting, 
to 5 Llrn for the sixth one. After that, the amplitude in this way oscillations of melt thickness will be re- 
of melt thickness oscillations decreases strongly with tarded if compared with the oscillations of energy flow 
time. This is the result of heat accumulation in the and surface temperature. At the same time on in- 
melt by its overheating. The larger the melt thickness creasing the melt thickness, the melting velocity 
and its overheating, the larger the amount of energy quickly decreases (see seventh and eighth pulse) due 
stored in the melt and therefore the smaller the influ- to the melt overheating. Concerning solidification vel- 
ence of pulse-periodic structure of energy flow on the ocity the situation is the following: the increase of 
melting front movement and the smaller the amplitude solidification rate with time, after the end of the energy 
ofmelt thickness oscillations. When the melt thickness pulse, results from a decrease in the melt overheating 
is small its maximum value per period of energy flow rate. Then, when the melt temperature reaches prac- 

Y 
E v 2.5x105 

3 

0” 

1.62 f (lo*s) 

Pulse shape 

1.4 

12 

tNE 

lb 
1.0 

c 
f 0.8 

% ii 0.6 

8 f 0.4 1 
0.2 

‘In 125 

E 100 

: 
$! 75 

x 50 

2 25 
x 

‘; 0 

2: -25 

.z -50 
9 
T -75 

gl -100 

5 -125 

r” -150 
c. 

I , I I I I I 
-50 1.00 125 1.50 1.75 2.00 

E-04 E-03 E-03 E-03 E-03 E-03 

E-04 E-03 

Time (x 0.182 s) 
E-03 E-03 

Time tx 0.182 s) 

FIG. 1. Heat processes corresponding to the pulse-periodic energy flow action on a steel slab. Shape of 
energy pulse, rectangular : pulse duration, 1.82 x IO-’ s ; duty cycle, 2 ; maximum value of energy density 
flow, 2.5x IO’ W cm-‘. Time dependence of: density of energy flow (curve 1); surface temperature 
normalized on the temperature of melting point T,, (curve 2) ; melt thickness (curve 3) ; melting (sol- 

idification) front velocity (curve 4). 



tically the melting point, the solidification rate will be velocity are disappearing and the phase boundary 
determined by the amount of heat produced at the moves only in one direction. This is the result of 
phase boundary during solidification. In this case the heat accumulation in the melt, the thickness of which 
absolute value of the solidification front velocity will reaches the value of 28 pm up to the end of the tenth 
decrease and this is the reason why an extreme appears pulse. With the increase of surface temperature values. 
on the curve of solidification velocity. The largest the evaporation front velocity increases too and 
values of solidification velocity correspond to the case becomes comparable to the values of the melting front 
of the smallest overheating of the melt, that is the case velocity. 
of energy action on the metal surface corresponding The results of modelling of heat processes under 
to the smallest melt thickness. This is the reason why the action of ten rectangular energy pulses (q = 10’ 
the largest value of solidification velocity is in the case W cm-?) with the same duration as on Fig. 1 and 
of the fourth energy pulse, when the melt just appears. with the duty cycle of 1.5 are considered on Fig. 2. The 
It is necessary to mention the following: the initial shape of surface temperature oscillations is almost the 

value of melting velocity is zero, u,(t,) = 0, in any same as that of the energy flux. If the maximum values 
case; so that all the melting curves start from the of temperature during the oscillation period starting 
1’ = 0 axis ; on the contrary the values of solidification from the fourth pulse are practically constant, the 

velocity, corresponding to the end of solidification, corresponding minimum values will monotonically 
usually are not equal to zero and the curves do not increase during the action of seven pulses and only 
reach the r = 0 axis. For a better understanding of then become constant. This leads to the decreasing 
the details of the behaviour of the phase boundary amplitude of surface temperature oscillations. the 

and the exact determination of the values of time, maximum values of which are limited by the evap- 

corresponding to the end of solidification, we con- oration phenomenon and minimum values by heat 

nected the last points on the solidification curves at accumulation near the irradiated surface. It seems that 

the end of solidification with the L’ = 0 axis by straight during the action of the last three pulses it is possible 

lines (for the case of the fourth-sixth pulses). When to speak of quasi-stationary surface temperature oscil- 
the melt is still present the curves of melting and lations, which are independent of pulse number. 
solidification velocity are continuous and not inter- The behaviour of melt thickness and melting front 
rupted. In the considered cases, evaporation does not velocity are even qualitatively different in cases cor- 

play an important role because the temperature of responding to Figs. 1 and 2. The damping of melting 

the irradiated surface is comparatively small. As an front oscillations is characterized by a simultaneous 

example, the largest values of evaporation velocity monotonic decrease of both maximum and minimum 

corresponding to the eighth, ninth and tenth pulses values. The evaporation front velocity values first 

are respectively 0.045, 0. I 1 and 0.22 cm s- ’ , that is increase from pulse to pulse, then after some period of 

less than I% of the average melting velocity. Prac- time practically copy the profile surface temperature 

tically the same regularities appear when the same oscillations. When the velocities of both phase bound- 
energy pulses have been separated by time intervals aries are of the same order of magnitude (last five 
twice as small (duty cycle = 1.5). In this case melting pulses) then the melt thickness behaviour is deter- 

starts from the third pulse. After the fifth pulse melt mined by both of them. If the decrease of melt thick- 

does not disappear. After the seventh pulse, melt ness after the end of the first pulse is the result of 

thickness oscillations are not essential. The maximum interrupting of surface heating, the decrease of heat 

absolute values of solidification velocity mono- thickness on the final stage of energy flow action will 

tonically decrease with the number of pulses and nega- be the result of well developed evaporation. In fact, 

tive values of phase front velocity practically dis- in corresponding time intervals the velocity of the 

appear after the ninth pulse. The evaporation is still evaporation front is larger than that of the melting 

weak and the values of the velocities are nearly two front. At the basis of the monotonical increase of 

times larger than in the previous case. average melt thickness values lies : (a) the decrease of 

Considering the same structure of pulse-periodic its amplitude of oscillations during the first four pulses 

energy flow as on Fig. 1, but using energy density flow due to heat accumulation near the irradiated surface ; 
two times larger for each pulse, i.e. y,, = 5 x 10’ W (b) the increase of its amplitude of oscillations during 

cm-‘, the results now show some differences in com- the final pulses as a result of well-developed evap- 

parison with the previous ones. Starting from the sixth oration. The above-mentioned regularity is more 

pulse. surface temperature becomes nearly a periodic evident for lower energy density flux, when before 

function of the time. Beginning from the same pulse the stage of well-developed evaporation (appearing 
(the sixth one) melt thickness becomes practically a consequently later), melt thickness oscillations prac- 

non-decreasing function of time with a weakly per- tically disappear. 

iodic character, the reason being that melting velocity, 
starting from the fifth pulse, presents only short per- 3.2. Action of energy pulses with pcrraholic shape 

iods of negative values, which are one order of mag- The time dependencies of surface temperature, melt 

nitude less than the corresponding values of melting thickness, velocities of melting (solidification) front 

velocity. After the eighth pulse, negative values of and front of evaporation are represented in Fig. 3 for 
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FIG. 2. Heat processes corresponding to the pulse-periodic energy How action on a steel slab. Shape of 
energy pulse, rectangular: pulse duration, I .X2 x 10. ’ s; duty cycle, I .5 ; maximum value of energy density 
flow, IO’ W cm ‘. Time dependence of: density of energy flow (curve I) ; surface temperature normalized 
on the temperature of melting point T, (curve 2) ; melting (solidification) front velocity (curve 3): melt 

thickness (curve 4). 

the case of pLilse-periodic energy flow action, where 
during each period of oscillations with duration of 
1 .X2 x 10 ’ s. energy density Row has been rep- 
resented by a parabolic function with a zero value in 
the middle of the period and maximum values equal 
to 5.25 x 10F W cm -’ on the boundaries. In this case 
20 energy pulses have been considered during the pcr- 
iod of energy flow action corresponding to the time 
of 3.458 x IO- ’ s. The calculations were produced up 

to the time equal to 3.64x 10. ’ s, so that after the 
end of energy flow action one more time interval, 
equal to the period of energy flow oscillations can be 
considered. A mention should be made of the fact that 
energy input for the first and the last (twentieth) pulse 
is two times smaller than for all the others. 

The irradiated surface temperature profile is char- 
acterized by approximately oscillatory behaviour cor- 
responding to the structure of the energy density flow. 
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FE. 3. Heat processes corresponding to the pulse-periodic energy flow action on a steel slab. Shape of 
energy pulse. parabolic; pulse duration, I .82 x IO -’ s; duty cycle, 2; maximum value of energy density 
flow, 5.25 x 10’ W cm-? Time dependence of: density of energy flow (curve 1) ; surface temperature 
normalized on the temperature of melting point r, (curve 2) ; melt thickness (curve 3) ; melting (sol- 

idification) front velocity (curve 4). 

with an exception for the cases of crossing of melting of the pulse-periodic structure of energy flow is not 

temperature value by the temperature curve. The significant, is nearly 1.5 pm, approximately the same 
dependence of melt thickness on time is characterized as in the previous cases. The most interesting and 
by a different behaviour at the beginning of the energy unusual behaviour demonstrat.es the dependence of 

flow action (for the case of the first ten pulses) and at melting (solidification) velocity vs time. The transition 

the end of action (last ten pulses). The strong oscil- from the essential melt thickness oscillations, deter- 

latory character is converted in a practically linear mined by the energy flow structure to the practically 
dependence. During the action of the fourth, fifth monotonic melt thickness growth determined by the 

and sixth pulses melt appears and then completely average energy input, is a function of the ratio of the 
disappears. The dependence of melt thickness vs time amount of energy stored in the liquid phase to the 
of the action of the last ten pulses can be determined value of energy flow oscillations relative to its own 

by the average energy input and does not depend on average. When this ratio is much greater than unity 
the structure of pulse-periodic energy flow. The value and in the absence of well-developed evaporation, the 
of the melt thickness, starting from which the influence melt thickness oscillations are weak. The smaller the 



deviations of pulse-periodic cncrgy How’ from its avcr- 
age value. the shorter is the stage of csscntial melt 
thickness oscillations. Both deviations of amplitude of 
energy density floM> from its average value and cncrgy 

input absolute value per oscillation period arc sig- 
nificant. On increasing frcqucncq oscillations with 
unchanged energy flow structure and average cncrgy 
input value, the melt thickness oscillations will be 
decreased. The oscillatory type of bchaviour of phase 
boundary velocity, with an initial increase of ampli- 

tude oscillations, followed by a further decrease and 
the weak dependence of oscillations frequency on time 
scans to be produced rather from a hyperbolic type 
equation than a parabolic one. Consideration of Fig. 
I reveals the qualitative difference in behaviour ol 
melting (solidification) velocity. The main reason for 

that is the difference in the pulse-periodic action struc- 
ture. In Fig. I the Limo intervals ofencrgy action have 
been followed by the same interbals with the absence 

of energy flow. In Fig. 3 in one spot per period of 
action. the value of energy density flow is cqual to 

Lero ; in all the other time intervals cncrgy flow is small 
in comparison with the maximum value but it exists. 
Even a small energy action on a solidifying melt will 
be significant when the melt thickness is 01’ the order 
of I ltm OI- less. as in the case of lilurth sixth pulses 

action. Even a light heating of the solidifying mctt 
decreases the absolute value of solidification velocity. 

The influence of the same energy amount action will 
decrease with increasing the melt thickness and 

decreasing the absolute values of solidification 
velocity. The further action of energy pulses on the 
metal surface product the melt thickness and melt 
overheating enough to stop the solidification pheno~n- 

enon. This is one more reason for ;I further dccreasc 
in the amplitude of melting velocity oscillations. 

The ahcragc cncrgy input and surface tcmperaturc 
arc not large enough for the extensive evaporation 
phenomenon, the largest vcloc~~y valuc~ arc less than 
2 Cl17 b ’ 

Considering the same structure of pulse-periodic 
energy flow as in Fig. 3 but with a double energy 
density flow, it is possible to see that the oscillations 
of melting (soliditication) velocity have been shifted 
to the right if compared to the plot of Fig. 3. In this 
case the increasing absolute values of soliditicatlon 
velocity, with the number of pulses. disappear and 

the Iargcst absolute values are obtained during early 
melting stages. The amplitude of melt \jetocity oscil- 
lations decreases down to the value of about 2.5 cm 
s ‘. but on increasing the sutfncc tempcraturc 
maximum values up to I .!,‘r,,,,. the velocity of cvap- 
oration increases too and the maximum value (I I cm 
s ‘) becomes higher than the corresponding values of 
melting velocity (i.e. about X cm s ’ ). 

Another relevant question for the pulse-periodic 
energy flow action problem is the existence of a quasi- 
stationary state. It is well known that in the case of a 

one-dimensional heating model constant energy dcn- 
sity flux causes an unlimited tcmpcraturc growth. the 
same is true [or the one-dimensional melting model. 
Only including the evaporation phenomenon. for 
example in the form of equations ( I) and (2). dots it 
become possible to obtain the quasi-stationary solu- 
tion. Considering the avcragc value of cncrgy dcn- 
sity flow instead of the real pulse-periodic structure 
allows the ‘average’ time independent solution to be 
obtained. The details of surface tcmpcraturc. vcl- 

ocities ofphusc boundaries and melt thickness chanp- 
ing up to values corresponding to the quasi-stationary 

state are of great interest. The time dependencies ol 
surl:nce temperature. melt thickness. velocities ofmclt- 

ing and evaporation fronts arc represented in Fig. 4 
for the case of pulse-periodic energy flow action where 

during each period ofoscillations ofthe same duration 
as for Figs. l-3. energy density flow consists of tri- 

angle pulses with a Lcro value at the beginning and the 
highest value. corresponding to 5.25 x IO” W cm ’ at 
the end of the period. In this case the action of I9 
triangle pulses is considered. Practically during the 

action of the first pulse. the aurllcc tcmpcraturc 
~-caches its maximum value of about X7:,,. During 
the further energy flow action the surface tcmpcraturc 

copies the structure of sncrgy flow. The evaporation 
front velocity. detincd by surface temperature, bnsi- 
ally shows the same behaviour. The largest transient 

period is in this case for melting front velocity and 
accordmgly to the melt thickness. Only after the action 

of the sixth pulse does melt thickness reach its maxnnum 
value. The value of melt thickness IS not constant as in 
the case of the quasi-stationary solution I’or constant 
energy flux but it. like all the other paramctcrs. oscil- 

latcs with time. In the previous C~SCX the oscillations 
of melt thickncsscs were the result of heating and 

melting the metal under the action of energy pdxcs 

whcreab cooling and solidification mainly dcpcnd on 
heat transfer into the bulk of the metal. In Fig. 4 the 
oscillations of melt thickness are mainly the result 

of the interaction of melting and evaporation phase 
boundaries. Both vclocitics of melting and evap- 
oration have the same average value. both arc osctl- 
lating. but at the beginning ofcach cncrgy tlow oscil- 
lations period the values of melting v&city are larga 
than the corresponding onus of the evaporation vcl- 
oclty. An opposite situation exists at the end of each 

period bccauae surface temperature and accordingly 
evaporation front velocity copies the cncrgy tlou 
structure. This leads to the increase of melt thickness 
at the beginning and to the decrease at the end ot 
energy pulses. The peculiarity of the considered GtiI- 
ation relative to the previous one reprcscnted in Figs. 
I -3 is in the exact coincidcncc of the frequency 01 
oscillations of surface tcmperaturc. vctocities of phase 
boundaries and melt thickness with the frcqucncy of 
energy flow. Only in the cast when all the physical 
variables of system (I) will oscillate at one frequency 
is it possible to obtain their avcragc tnnc indepcndcnt 
\;alues for each pcrlod of oscillations. Thcrcli)re. in 
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FIG. 4. Heat processes corresponding to the pulse-periodic energy flow action on a steel slab. Shape of 
energy pulse. triangle; pulse duration, I .82 x IO-’ s ; duty cycle, 2 ; maximum value of energy density flow, 
5.25 x 10” W cm- ‘. Time dependence of: density of energy flow (curve I) ; surface temperature normalized 
on the temperature of melting point T, (curve 2) ; melt thickness (curve 3) ; melting (solidification) front 

velocity (curve 4). 

the considered case no exact average time independent 
values of physical variables exist. After the con- 
sideration of the results of pulse-periodic energy flow 
action with different pulse shape and values of energy 
density flow is it possible to make the conclusion 
that the smallest transient period corresponds to the 

change of surface temperature, the largest to the melt 
thickness (or velocity of melting) and between them 
but close to the transient period of surface tem- 
perature is the value of the evaporation velocity tran- 
sient period. For example, consideration of the energy 
flow with the same triangle structure but two times 
smaller density of energy flow shows that 19 pulses 
are not enough for melt thickness stabilization, the 
average values of which per oscillation period are still 

growing; instead oscillations of surface temperature 
and evaporation velocity starting from the sixth pulse 
are practically independent of pulse number (constant 
maximum temperature values per period and very 
weak increase of minimum values). Of course it is 
possible to reach the quasi-stationary state for average 
energy density flow two times smaller than in Fig. 4 

and for 19 triangle pulses, for example increasing the 
pulse duration by two and accordingly the time of 
consideration. In this case the quasi-stationary state 
is reached just at the end of the pulse series. 

4. CONCLUSIONS 

The results of mathematical modelling of the action 
of pulse-periodic energy fiow on a metal surface 
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show the necessity of considering the ~~~~cn~crlt of 
IWO phase houndarics: melting (soliditication) and 

~v~~~l~l-~tit~i~ fronts. The numerical analysis described 

shows the possibility to dctcrminc a number of rcgu- 

larities in heat processes of the ~lllse-pcrio~~i~ energy 

tlo\v action. Surface temperature oscillations follow 

the energy Aow structure cxoept for the fiws ofcross- 

ing the melting point by the temperature curve, where 

the shape of t~~llp~r~~tui-~ (}s~i~l~~ti~~ns may hc broken 

by the energy absorption and rclcasc. dctcrmincd 

consequently by mcltinp nnd s~)lidi~~~~ti~~n of metal. 

As their frcqucncies arc cquul to those ofcncrgy Rows 

then the ~In~litLld~ dccrcascs M ith the mcre~~sc of 

energy density flow, time of action and somctimcs in 

the area of crossing the melting point. The latter is 

characteristic for the r&lively low values of cncrgy 

density flux. The melt thickness bchaviour shows a 

strongly oscillatory character during the initial stage 

of its esistencc. Then tho ~irn~litLld~ of ~~s~il~~lt~olls 

strongly dccroases up lo it practically monotonic 

increase of melt thickness determined by the average 

energy input value. With a further incrcasc of energy 

action time. which leads to the surthcc t~lilp~~~tLir~ 

increasing and surface evaporation development. melt 

thickness oscillations appear nnc~ again. When the 

melt thickness is small the frcqucncq of its oscillations 

is equal to the cncrgy flow one, and then the maximum 

values of surface tempcrnturc and melt thickness per 

oscillation period are rcachcd at the same time. With 

increasing melt thickness. the frequency shift appears 

up to the oscillation of surface temperature and melt 

depth being in the antiphaso. The melting (soi- 

idification) vciocity is charactcrizcd by essentially 

ditt‘erent lypos of strongly oscillatory- behaviour. Dur- 

ing the initial stag of melt cxistcncc its amplitude 

of melting (s~~i~di~c~tion) velocity ~)s~ili~lti~~ns can 

incrcasc or dccrwsc being detcrmincd by the energy 

flow structure. With a further rnclt thickness increase. 

the amplitude of velocity oscillations strongly 

decreases and the ~b~~e-nlenti~ncd iieyuency shift 

appears. At lhc stage of well-developed evaporation 

its velocity oscill;~tions arc determined by the surface 

tcrnpcraturc copying its osciliations 5hapc. The cxis- 

tence of qLi~s;-st~~tion~lr~ ~~s~ill~~~i~~ns oi surface tem- 

perature, melt thickness and velocities of phase 

boundaries with one frcyucncy (equal to the energy 
flow one) with the corresponding avcragc valises per 

oscillation period ~e~ti~~onst~nt is shown. It is necess- 

ary to take into account three dilTerent transient per- 

iads for the shape of quasi-stationary oscillations: 

the snxiilcst for surface temperature. the largest for 

melting front vclocitics and melt thickness, finally 

between them for the cvapowtion front wlncity. 
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MODELISATION DE L’ACTION DUN FLUX D’ENERGIE A IMPULSION PERIODIQUE 
SUR DES MATERIAUX METALLIQUES 

R&sum&On considtre des mecanismes thermiques sous I’action d’un flux d’tnergie a impulsion periodique 
sur des materiaux metalliques. Le chauffage. la fusion, I’evaporation et la solidification sont analyses par 
une modelisation mathematique. Les vitesses et les positions des front&es des phases (a la fois evaporation 
et fusion) sont dtterminees pour un large domaine des paramttres optratoires. On montre I’existence de 
la temperature superficielle, de l’epaisseur fondue et des vitesses des front&es des phases, pour diffirents 
types de regimes. On determine les relations entre la structure du flux energetique periodique et l’evolution 

des mtcanismes thermiques. 

MODELLIERUNG EINER PERIODISCH GEPULSTEN ENERGIESTROMUNG AUF 
METALLISCHE MATERIALIEN 

Zusammenfassung-Es werden Warmeprozesse mit periodisch gepulster Energiestromung auf metallische 
Materialien betrachtet. Mit Hilfe eines mathematischen Modells werden die Vorglnge der Beheizung, des 
Schmelzens, des Verdampfens und des Erstarrens untersucht. Geschwindigkeit und Lage der Phasengrenzen 
(beim Verdampfen und beim Schmelzen) werden in einem weiten Bereich der EinfluBgrBBen bestimmt. Fur 
verschiedene Typen von Oszillationen werden Obertlachentemperaturen, Schmelzdicken und Geschwindig- 
keiten der Phasengrenzen gezeigt. Der Zusammenhang zwischen der Struktur des periodisch gepulsten 

Energiestroms und der Warmeausbreitung wird bestimmt. 

MO~EJTRPOBAHHE B03AERCTBHJl HMI-IYJIbCHO-HEPMOflHgECKOrO HOTOKA 
3HEPFMH HA METAJIJIH9ECKHE MATEPMAJIbI 

AmoTauns--MccJIenyIoTcn TemOBble npoueccbx, npO&iCXO~Ilnie npn BO3@-iCTBHH EiMlI)'JIbCIiO- 

neprio~uecrcoro noroza 3tieprmi na hfem.nnu~ecrcae hrarepnanbr. C noMotnbn3 hfaTeMaTH9ecKor0 
MOJWIH~BZUfHR aHUIH3HpyloTCK IIpOIJeCCbI HilpBa, MaBJICHHR, HCnapeHHn B 3aTEepAeBaHHn. Onp& 
nenHH3Tcn czopocrb n pacnono~emie +a3onblx rpannn (ncnapemin n nnannemm) aRn nnipovoro Dana- 
30ria n3Menetinji pexd(~hf~bl~ napaMerpon. IIPHB~IUITCK namibre arm Tehtneparypbr nosepxeocre, 
TOJIIIJHH~I PaCnnaBa H CKOPOCTH @30Bb1X TaHHU IlpH PEUJlH'IHblX THlIaX KOne6aTenbHblX PeXUiMOB. 

YCTaHaBJIHBaeTCK 3aBHCHMOCTb MeWy CTpj'KTypOii HMnynbcHO-nCpHOrursecKoro IlOTOKa 3HHeprHIi H 

3BO~lO~&TeMOBbIXIIpOI,CCCOB. 


